Generalized linear differential equation using Hyers-Ulam stability approach

نویسندگان

چکیده

In this paper, we study the Hyers-Ulam stability with respect to linear differential condition of fourth order. Specifically, treat ${\psi}$ as an interact arrangement condition, i.e., $ \begin{align*} {\psi}^{iv} ({\varkappa}) + {\xi}_1 {\psi}{'''} ({\varkappa})+ {\xi}_2 {\psi}{''} {\xi}_3 {\psi}' {\xi}_4 {\psi}({\varkappa}) = {\Psi}({\varkappa}) \end{align*} $ where ${\psi} \in c^4 [{\ell}, {\mu}], {\Psi} {\mu}]$. We demonstrate that ${\psi}^{iv} {\Psi}({\varkappa})$ has stability. Two examples are provided illustrate usefulness proposed method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mittag-Leffler-Hyers-Ulam Stability of Fractional Differential Equation

In this article, we study the Mittag-Leffler-Hyers-Ulam and Mittag-Leffler-Hyers-Ulam-Rassias stability of a class of fractional differential equation with boundary condition.

متن کامل

Generalized Hyers - Ulam - Rassias Stability of a Quadratic Functional Equation

In this paper, we investigate the generalized Hyers-Ulam-Rassias stability of a new quadratic functional equation f (2x y) 4f (x) f (y) f (x y) f (x y) + = + + + − −

متن کامل

Hyers-Ulam stability of a generalized trigonometric-quadratic functional equation

The Hyers-Ulam stability of the generalized trigonometric-quadratic functional equation ( ) ( ) ( ) ( ) ( ) ( ) 2 F x y G x y H x K y L x M y + − − = + + over the domain of an abelian group and the range of the complex field is established based on the assumption of the unboundedness of the function K. Subject to certain natural conditions, explicit shapes of the functions H and K are determine...

متن کامل

Hyers–ulam–rassias Stability of a Generalized Pexider Functional Equation

In this paper, we obtain the Hyers–Ulam–Rassias stability of the generalized Pexider functional equation ∑ k∈K f(x+ k · y) = |K|g(x) + |K|h(y), x, y ∈ G, where G is an abelian group, K is a finite abelian subgroup of the group of automorphism of G. The concept of Hyers–Ulam–Rassias stability originated from Th.M. Rassias’ Stability Theorem that appeared in his paper: On the stability of the lin...

متن کامل

On Hyers-ulam Stability of Generalized Wilson’s Equation

In this paper, we study the Hyers-Ulam stability problem for the following functional equation (E(K)) ∑ φ∈Φ ∫ K f(xkφ(y)k)dωK(k) = |Φ|f(x)g(y), x, y ∈ G, where G is a locally compact group, K is a compact subgroup of G, ωK is the normalized Haar measure of K, Φ is a finite group of K-invariant morphisms of G and f, g : G −→ C are continuous complex-valued functions such that f satisfies the Kan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: AIMS mathematics

سال: 2021

ISSN: ['2473-6988']

DOI: https://doi.org/10.3934/math.2021096